Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108624, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38174321

RESUMO

The transcription factor Shavenbaby (Svb), the only member of the OvoL family in Drosophila, controls the fate of various epithelial embryonic cells and adult stem cells. Post-translational modification of Svb produces two protein isoforms, Svb-ACT and Svb-REP, which promote adult intestinal stem cell renewal or differentiation, respectively. To define Svb mode of action, we used engineered cell lines and develop an unbiased method to identify Svb target genes across different contexts. Within a given cell type, Svb-ACT and Svb-REP antagonistically regulate the expression of a set of target genes, binding specific enhancers whose accessibility is constrained by chromatin landscape. Reciprocally, Svb-REP can influence local chromatin marks of active enhancers to help repressing target genes. Along the intestinal lineage, the set of Svb target genes progressively changes, together with chromatin accessibility. We propose that Svb-ACT-to-REP transition promotes enterocyte differentiation of intestinal stem cells through direct gene regulation and chromatin remodeling.

2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876742

RESUMO

Even in well-characterized genomes, many transcripts are considered noncoding RNAs (ncRNAs) simply due to the absence of large open reading frames (ORFs). However, it is now becoming clear that many small ORFs (smORFs) produce peptides with important biological functions. In the process of characterizing the ribosome-bound transcriptome of an important cell type of the seminal fluid-producing accessory gland of Drosophila melanogaster, we detected an RNA, previously thought to be noncoding, called male-specific abdominal (msa). Notably, msa is nested in the HOX gene cluster of the Bithorax complex and is known to contain a micro-RNA within one of its introns. We find that this RNA encodes a "micropeptide" (9 or 20 amino acids, MSAmiP) that is expressed exclusively in the secondary cells of the male accessory gland, where it seems to accumulate in nuclei. Importantly, loss of function of this micropeptide causes defects in sperm competition. In addition to bringing insights into the biology of a rare cell type, this work underlines the importance of small peptides, a class of molecules that is now emerging as important actors in complex biological processes.


Assuntos
Infertilidade Masculina/genética , Mutação com Perda de Função , Espermatozoides/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Masculino , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
EMBO J ; 40(4): e104347, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33372708

RESUMO

Adult stem cells must continuously fine-tune their behavior to regenerate damaged organs and avoid tumors. While several signaling pathways are well known to regulate somatic stem cells, the underlying mechanisms remain largely unexplored. Here, we demonstrate a cell-intrinsic role for the OvoL family transcription factor, Shavenbaby (Svb), in balancing self-renewal and differentiation of Drosophila intestinal stem cells. We find that svb is a downstream target of Wnt and EGFR pathways, mediating their activity for stem cell survival and proliferation. This requires post-translational processing of Svb into a transcriptional activator, whose upregulation induces tumor-like stem cell hyperproliferation. In contrast, the unprocessed form of Svb acts as a repressor that imposes differentiation into enterocytes, and suppresses tumors induced by altered signaling. We show that the switch between Svb repressor and activator is triggered in response to systemic steroid hormone, which is produced by ovaries. Therefore, the Svb axis allows intrinsic integration of local signaling cues and inter-organ communication to adjust stem cell proliferation versus differentiation, suggesting a broad role of OvoL/Svb in adult and cancer stem cells.


Assuntos
Diferenciação Celular , Autorrenovação Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Intestinos/fisiologia , Células-Tronco/citologia , Esteroides/farmacologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Células-Tronco/metabolismo , Fatores de Transcrição/genética
4.
J Biol Chem ; 295(39): 13617-13629, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32737196

RESUMO

The evolutionarily conserved multiprotein Mediator complex (MED) serves as an interface between DNA-bound transcription factors (TFs) and the RNA Pol II machinery. It has been proposed that each TF interacts with a dedicated MED subunit to induce specific transcriptional responses. But are these binary partnerships sufficient to mediate TF functions? We have previously established that the Med1 Mediator subunit serves as a cofactor of GATA TFs in Drosophila, as shown in mammals. Here, we observe mutant phenotype similarities between another subunit, Med19, and the Drosophila GATA TF Pannier (Pnr), suggesting functional interaction. We further show that Med19 physically interacts with the Drosophila GATA TFs, Pnr and Serpent (Srp), in vivo and in vitro through their conserved C-zinc finger domains. Moreover, Med19 loss of function experiments in vivo or in cellulo indicate that it is required for Pnr- and Srp-dependent gene expression, suggesting general GATA cofactor functions. Interestingly, Med19 but not Med1 is critical for the regulation of all tested GATA target genes, implying shared or differential use of MED subunits by GATAs depending on the target gene. Lastly, we show a direct interaction between Med19 and Med1 by GST pulldown experiments indicating privileged contacts between these two subunits of the MED middle module. Together, these findings identify Med19/Med1 as a composite GATA TF interface and suggest that binary MED subunit-TF partnerships are probably oversimplified models. We propose several mechanisms to account for the transcriptional regulation of GATA-targeted genes.


Assuntos
Proteínas de Drosophila/metabolismo , Fatores de Transcrição GATA/metabolismo , Complexo Mediador/metabolismo , Animais , Sítios de Ligação , Proteínas de Drosophila/genética , Drosophila melanogaster , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica/genética
5.
J Vis Exp ; (151)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31545318

RESUMO

To understand the function of an organ, it is often useful to understand the role of its constituent cell populations. Unfortunately, the rarity of individual cell populations often makes it difficult to obtain enough material for molecular studies. For example, the accessory gland of the Drosophila male reproductive system contains two distinct secretory cell types. The main cells make up 96% of the secretory cells of the gland, while the secondary cells (SC) make up the remaining 4% of cells (about 80 cells per male). Although both cell types produce important components of the seminal fluid, only a few genes are known to be specific to the SCs. The rarity of SCs has, thus far, hindered transcriptomic analysis study of this important cell type. Here, a method is presented that allows for the purification of SCs for RNA extraction and sequencing. The protocol consists in first dissecting glands from flies expressing a SC-specific GFP reporter and then subjecting these glands to protease digestion and mechanical dissociation to obtain individual cells. Following these steps, individual, living, GFP-marked cells are sorted using a fluorescent activated cell sorter (FACS) for RNA purification. This procedure yields SC-specific RNAs from ~40 males per condition for downstream RT-qPCR and/or RNA sequencing in the course of one day. The rapidity and simplicity of the procedure allows for the transcriptomes of many different flies, from different genotypes or environmental conditions, to be determined in a short period of time.


Assuntos
Drosophila/citologia , Citometria de Fluxo/métodos , RNA/isolamento & purificação , Animais , Masculino , Análise de Sequência de RNA , Transcriptoma
6.
Mol Cell Biol ; 39(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30670567

RESUMO

DNA-bound transcription factors (TFs) governing developmental gene regulation have been proposed to recruit polymerase II machinery at gene promoters through specific interactions with dedicated subunits of the evolutionarily conserved Mediator (MED) complex. However, whether such MED subunit-specific functions and partnerships have been conserved during evolution has been poorly investigated. To address this issue, we generated the first Drosophila melanogaster loss-of-function mutants for Med1, known as a specific cofactor for GATA TFs and hormone nuclear receptors in mammals. We show that Med1 is required for cell proliferation and hematopoietic differentiation depending on the GATA TF Serpent (Srp). Med1 physically binds Srp in cultured cells and in vitro through its conserved GATA zinc finger DNA-binding domain and the divergent Med1 C terminus. Interestingly, GATA-Srp interaction occurs through the longest Med1 isoform, suggesting a functional diversity of MED complex populations. Furthermore, we show that Med1 acts as a coactivator for the GATA factor Pannier during thoracic development. In conclusion, the Med1 requirement for GATA-dependent regulatory processes is a common feature in insects and mammals, although binding interfaces have diverged. Further work in Drosophila should bring valuable insights to fully understand GATA-MED functional partnerships, which probably involve other MED subunits depending on the cellular context.


Assuntos
Subunidade 1 do Complexo Mediador/metabolismo , Complexo Mediador/metabolismo , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Proliferação de Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fatores de Transcrição GATA/metabolismo , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação com Perda de Função , Subunidade 1 do Complexo Mediador/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo
7.
PLoS Genet ; 10(5): e1004303, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24786462

RESUMO

Hox genes in species across the metazoa encode transcription factors (TFs) containing highly-conserved homeodomains that bind target DNA sequences to regulate batteries of developmental target genes. DNA-bound Hox proteins, together with other TF partners, induce an appropriate transcriptional response by RNA Polymerase II (PolII) and its associated general transcription factors. How the evolutionarily conserved Hox TFs interface with this general machinery to generate finely regulated transcriptional responses remains obscure. One major component of the PolII machinery, the Mediator (MED) transcription complex, is composed of roughly 30 protein subunits organized in modules that bridge the PolII enzyme to DNA-bound TFs. Here, we investigate the physical and functional interplay between Drosophila melanogaster Hox developmental TFs and MED complex proteins. We find that the Med19 subunit directly binds Hox homeodomains, in vitro and in vivo. Loss-of-function Med19 mutations act as dose-sensitive genetic modifiers that synergistically modulate Hox-directed developmental outcomes. Using clonal analysis, we identify a role for Med19 in Hox-dependent target gene activation. We identify a conserved, animal-specific motif that is required for Med19 homeodomain binding, and for activation of a specific Ultrabithorax target. These results provide the first direct molecular link between Hox homeodomain proteins and the general PolII machinery. They support a role for Med19 as a PolII holoenzyme-embedded "co-factor" that acts together with Hox proteins through their homeodomains in regulated developmental transcription.


Assuntos
Drosophila melanogaster/genética , Proteínas de Homeodomínio/metabolismo , Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Animais , Sítios de Ligação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...